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1. Introduction

Frequent monitoring of remotely sensed vegetation indices in
agricultural fields can provide important crop growth information
for many precision agricultural applications (Pinter et al., 2003).
Precision irrigation is a management approach that attempts to
precisely match water application amounts to spatially distributed
crop water use (Sadler et al., 2000). Such management techniques
would be greatly enhanced by collection of timely and spatially
contiguous data on crop evapotranspiration (ETc) within fields. A
simple, yet promising, approach utilizes crop coefficients derived

from the normalized difference vegetation index (NDVI) along
with local climatic data to infer variable crop ETc quantities in near
real-time (Hunsaker et al., 2005; Er-Raki et al., 2007; Gonzalez-
Dugo and Mateos, 2008). Hunsaker et al. (2005) derived relation-
ships to calculate the basal crop coefficient (Kcb) for cotton as a
function of NDVI. Subsequently, Hunsaker et al. (2005) used
frequent ground-based observations of NDVI and these relation-
ships to estimate Kcb during field studies with cotton. Their results
showed that the NDVI-based Kcb data, multiplied by grass-
reference evapotranspiration obtained from a local meteorological
station, provided reasonably good estimates of cotton transpira-
tion (Tr) for guiding irrigation scheduling during the season. For
applying this approach to the commercial field scale, the required
remote sensing data for NDVI can be acquired from imagery aboard
satellite (Moran et al., 1997) and aircraft (Wood et al., 2003;
Fitzgerald et al., 2006). Pinter et al. (2003), as well as Trout et al.
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A B S T R A C T

Observations of the normalized difference vegetation index (NDVI) from aerial imagery can be used to

infer the spatial variability of basal crop coefficients (Kcb), which in turn provide a means to estimate

variable crop water use within irrigated fields. However, monitoring spatial Kcb at sufficient temporal

resolution using only aerial acquisitions would likely not be cost-effective for growers. In this study, we

evaluated a model-based sampling approach, ESAP (ECe Sampling, Assessment, and Prediction), aimed at

reducing the number of seasonal aerial images needed for reliable Kcb monitoring. Aerial imagery of

NDVI was acquired over an experimental cotton field having two treatments of irrigation scheduling,

three plant density levels, and two N levels. During both 2002 and 2003, ESAP software used input

imagery of NDVI on three separate dates to select three ground sampling designs having 6, 12, and 20

sampling locations. On three subsequent dates during both the years, NDVI data obtained at the design

locations were then used to predict the spatial distribution of NDVI for the entire field. Regression of

predicted versus imagery observed NDVI resulted in r2 values from 0.48 to 0.75 over the six dates, where

higher r2 values occurred for predictions made near full cotton cover than those made at partial cover.

Prediction results for NDVI were generally similar for all three sample designs. Cumulative transpiration

(Tr) for periods from 14 to 28 days was calculated for treatment plots using Kcb values estimated from

NDVI. Estimated cumulative Tr using either observed NDVI from imagery or predicted NDVI from ESAP

procedures compared favorably with measured cumulative Tr determined from soil water balance

measurements for each treatment plot. Except during late season cotton senescence, errors in estimated

cumulative Tr were between 3.0% and 7.3% using observed NDVI, whereas they were they were between

3.4% and 8.8% using ESAP-predicted NDVI with the 12 sample design. Thus, employing a few seasonal

aerial acquisitions made in conjunction with NDVI measurements at 20 or less ground locations

optimally determined using ESAP, could provide a cost-effective method for reliably estimating the

spatial distribution of crop water use, thereby improving cotton irrigation scheduling and management.
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(2008), however, cite several examples including cost, spatial
resolution and frequency of data, and data availability that may
limit the sufficiency of satellite and aircraft platforms for real-time,
crop coefficient irrigation management.

Ground-based data collection consisting of radiometers or
other sensors mounted on center pivot irrigation systems (Peters
and Evett, 2007), tractors (Scotford and Miller, 2004), sprayers (Sui
et al., 2008), or other moveable agricultural equipment are
presently being developed for remote sensing monitoring during
the growing season. While such systems could offer viable
alternatives to aerial imagery in many instances, they would not
be generally applicable for collecting frequent NDVI data within
surface-irrigated fields. An alternative NDVI acquisition system
envisioned for surface-irrigated fields is to implement a network of
fixed, oblique viewing, radiometric sensors that collect daily data
at certain locations within a field. For the network system to be
cost effective, a minimum number of sensors should be employed
within each field. However, the optimal locations for a small
number of fixed sensors in a field would need to be identified.
Ideally, the locations selected are those that would offer the best
chance for statistically predicting the spatial patterns of NDVI
within the entire field.

Grid-point and management zone sampling are two common
techniques for acquiring field spatial variability information in
precision agriculture (Chang et al., 2003). In the first approach, a
sampling grid network is generally established at regular intervals
within the field (Chang et al., 2003). In contrast, the management
zone approach is based on the assumption that a field is a mosaic of
different zones, where each zone has exclusive characteristics
(Fleming et al., 2000). For this approach, samples are collected from
each management zone. Using either of these techniques (or a
combination of them) can be effective for small sample sizes, but
they rapidly become impractical and costly for large sample sizes.
Additionally, neither technique addresses the associated problem
of spatial autocorrelation, a factor that degrades the performance
of resulting regression equations (Fitzgerald et al., 2006).

One way that reduces these problems is to sample spatial
variability of vegetation characteristics in a statistically optimal
way. This sampling approach, developed by Lesch et al. (1995),
Lesch et al. (2000), and Lesch (2005), considers the need to
represent the full range of spatial variability while also minimizing
sample sizes. The software package, ECe Sampling, Assessment,
and Prediction (ESAP), implements this approach by ensuring that
samples are spatially representative for the entire survey region
and by establishing empirical relationships between observations
and estimates. ESAP was originally developed for generating
optimal soil salinity sampling designs using bulk soil conductivity
survey data (Lesch et al., 2000), but in principle can be used with
various types of remotely sensed data, such as NDVI (Fitzgerald
et al., 2006). ESAP is a spatial site selection algorithm specifically
designed to identify calibration sites that are well suited for
multiple linear regression models. The ESAP algorithms select a
limited set of calibration sites (6, 12, or 20 sites) having desirable
spatial and statistical characteristics by combining survey site
location information with response surface design techniques.
These regression models can in turn be used to predict the spatial
values of the variable of interest across the field.

In this study, we used the ESAP algorithms to select NDVI
sampling locations within an irrigated cotton field. A full set of field
NDVI values (>17,000 pixels) acquired from aerial imagery on six
days during two cotton growing seasons were applied in ESAP to
select sample designs having 6, 12, and 20 locations. The primary
objective was to test the ability of ESAP to successfully predict the
field spatial distribution of NDVI on a subsequent date in the
season using only NDVI data collected at the few sample locations.
A secondary objective was to compare differences in NDVI

prediction due to the number of sampling locations employed. A
full set of observed NDVI data obtained from aerial imagery on the
subsequent dates were used to evaluate the predictions. Thirdly, an
evaluation was made to assess the effectiveness of using Kcb
generated from ESAP-predicted NDVI data to estimate spatially
variable measured Tr within the irrigated cotton field.

2. Materials and methods

2.1. Field description

Remote sensing irrigation scheduling experiments, previously
described by Hunsaker et al. (2005), were conducted during two
cotton seasons on a 1.3-ha field planted on April 22, 2002 (day of
year [DOY] 112) and on April 16, 2003 (DOY 106) at The University
of Arizona, Maricopa Agricultural Center (MAC). The soil was a Casa
Grande series (Typic Natriargid, fine-loamy, mixed, hyperthermic)
with a predominantly sandy loam texture. The experimental
configuration was a randomized design with incomplete blocking
that included 32 plots, each 11.2 m � 21 m. Three treatment
factors were imposed in the experiments: irrigation scheduling
protocol (i.e., Kcb method), plant density, and nitrogen level,
resulting in 12 sub-treatments (Table 1). The configuration
allowed testing of crop coefficient irrigation scheduling, while
considering differences in cotton growth and ETc due to plant
density and fertilization. The two irrigation scheduling treatments,
equally divided into 16 plots each, were based on crop ETc
estimates using a standard FAO-56 Kcb curve described by Allen
et al. (1998) and denoted as the FAO Kcb method, and an NDVI-
based Kcb approach (Hunsaker et al., 2005), denoted as the NDVI
Kcb method. During these experiments, NDVI observations were
obtained for all plots every few days using a hand-held radiometer.
Plants were sown at three densities: 5, 10, and 20 plants/m2,
denoted as sparse, typical, and dense treatments, respectively.
Nitrogen fertilizer was applied at two levels, designated high and
low N treatments. For the 2002 experiment, the high and low
treatments received �236 and �96 kg N/ha, respectively, whereas
for 2003, they received �172 and �60 kg N/ha, respectively. The
plots were hand-harvested in October 2002 and 2003.

Neutron scattering and time-domain-reflectometry (TDR)
techniques were used to obtain frequent measurements of soil
water contents for all 32 plots to a depth from 0 to 3.0 m below the
soil surface. The soil water content data, collected near the center
of each plot, were used along with measurements of irrigation
volumes and rainfall, to calculate cumulative ETc during the season
as the residual of the soil water balance equation. Hunsaker et al.
(2005) presented and described the procedures used to obtain the
separate cumulative Tr and soil evaporation components of the
cumulative ETc. Measured daily meteorological data, including
solar radiation, air temperature, wind speed, humidity, and rainfall
were used to compute daily values for the grass-reference
evapotranspiration (ETo) using the FAO-56 Penman–Monteith
equation (Allen et al., 1998). The meteorological data were
provided by the University of Arizona, AZMET weather station
(Brown, 1989) that was located approximately 200 m from the
field site.

2.2. Remote sensing imagery

Imagery was acquired from aircraft using a mounted Duncan-
Tech camera1 (MS3100; Redlake Inc., San Diego, CA) that obtained
visible and near infrared (VNIR) imagery in three bands centered at
670, 720, and 790 nm with 10 nm bandwidths. The flight elevation
in both years was about 800 m above ground level. The camera

1 Mention of company or trade names does not imply endorsement by the USDA.
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field of view was 158 � 208 and the pixel resolution for the
experiments was �0.5 m. Imagery was acquired about 60–90 min
after solar noon, between 13:15 and 14:00 h, local time. The VNIR
data were calibrated using four, 8 m � 8 m standard reflectance
tarps placed near the field having nominal reflectances of 4%, 8%,
48%, and 64% (Fitzgerald et al., 2006). Image processing, including
geo-registration and masking, was performed using IMAGINE2

software (Version 9.1; ERDAS, Inc., Atlanta, GA). Raw imagery was
first converted to reflectance (r) and then to NDVI using Eq. (1):

NDVI ¼ r790 � r670

r790 þ r670

(1)

IMAGINE2 software was also used to delete any reflectance data
obtained for the soil border dikes between treatment plots as well
as that outside of the field’s boundary.

Ten dates of imagery collection were considered in this study,
which were divided into two sets. Survey imagery, denoted as Set
A, included imagery obtained on six different dates over the two-
year experiment: day of year (DOY) 163, 226, and 246 in 2002, and
DOY 153, 176, and 190 in 2003. Calibration/prediction images,
denoted as Set B, also included six dates: DOY 176, 246, and 261 in
2002, and DOY 168, 190, and 217 in 2003.

2.3. ESAP-software

The ESAP-95 Version 2.35R software package used in this study
is public domain software developed by the USDA-ARS, George E.
Brown, Jr., Salinity Laboratory (Lesch et al., 2000). The software
contains three programs: ESAP-RSSD (Response Surface Sampling
Design), designed to generate optimal sampling locations from
survey data; ESAP-Calibrate, designed to estimate calibration
equations to ultimately predict the spatial values of the desired
variable from the survey data; and ESAP-SaltMapper, which
produces high quality graphical outputs for survey and/or
prediction data. All three programs were used in this study. The
following sections describe the ESAP procedures that were
employed. A flowchart provides a diagrammatic representation
of the procedures (Fig. 1).

2.3.1. ESAP-RSSD (Response Surface Sampling Design)

The ESAP-RSSD is a statistical program that creates optimal
sampling designs from survey information. The program uses a
modified response surface sampling designed to statistically select
a small set of sample locations from the survey data. Given the
additional assumption of residual normality, the program opti-
mizes parameters via least squares regression, while minimizing
spatial correlation effects in the regression model residuals. The
program does this by using an iterative algorithm to select adjacent
sample locations as far apart as possible. The survey data are first

transformed, de-correlated, and validated within the ESAP-RSSD
program. The software uses a principle components analysis to de-
correlate the survey data (e.g., when more than one signal reading
is acquired at each site) and to identify and remove any outliers.
ESAP then generates a set of optimal sample locations. More
detailed information about the statistical methodology and
algorithms used in the ESAP-RSSD program is given by Lesch
(2005).

The primary goal of ESAP-RSSD is to select an optimal set of geo-
registered locations from which the crop or soil attribute of
interest will be sampled. The attribute data collected from the set
of sample locations can then be used in ESAP-Calibrate to estimate
calibration models for predicting individual site attributes within
the field. ESAP provides the option of selecting 6, 12, or 20
calibration locations. For this study, NDVI aerial survey images (Set
A) of the field collected on six dates spanning early to late season
cotton growing periods were used (Table 2). ESAP-RSSD was
applied to select 6, 12, and 20 NDVI calibration sites for each of the
Set A image dates.

2.3.2. ESAP-Calibrate

The ESAP-Calibrate program is designed to use survey data and
co-located calibration sample data to predict the spatial distribu-
tion of a particular soil or plant property, which for this study is
NDVI. The software does this by first estimating a regression
model, based on NDVI data acquired at the calibration locations,

Table 1
Summary of sub-treatment variables for the 2002 and 2003 cotton experiments.

Sub-treatment acronym Experimental variables Number of replicates

Kcb method Plant density Nitrogen level

FSH FAO (F) Sparse (S) High (H) 2

FSL FAO (F) Sparse (S) Low (L) 2

FTH FAO (F) Typical (T) High (H) 4

FTL FAO (F) Typical (T) Low (L) 4

FDH FAO (F) Dense (D) High (H) 2

FDL FAO (F) Dense (D) Low (L) 2

NSH NDVI (N) Sparse (S) High (H) 2

NSL NDVI (N) Sparse (S) Low (L) 2

NTH NDVI (N) Typical (T) High (H) 4

NTL NDVI (N) Typical (T) Low (L) 4

NDH NDVI (N) Dense (D) High (H) 2

NDL NDVI (N) Dense (D) Low (L) 2

Fig. 1. Flowchart showing sequence of steps used in ESAP procedures.
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and then uses the model to generate NDVI predictions across the
entire field. Additionally, the regression model can be used to
create various field summary statistics, such as the average level of
the target property in the field and the fractional area of the field
that exhibits property values above a given threshold (referred to
in ESAP as a ‘‘range interval estimate (RIE)’’).

After ESAP-RSSD identifies optimal locations within each
sample design (i.e., 6, 12, and 20 locations) from a given NDVI
survey image (Set A), the NDVI values at the corresponding geo-
referenced sample locations were extracted from a subsequent
image (Set B), occurring between 13 and 27 days later (Table 2).
These NDVI values were then used to develop a calibration model
to predict NDVI at all locations for the subsequent date. Note that
in a practical application of this approach, perhaps only a few field
survey images would be available to a grower during a cotton
season. Thus, to predict point-to-point NDVI values for all field
locations or field mean NDVI for another date after an image, the
grower would need to collect ground-based NDVI at only the
selected sample locations identified using ESAP procedures.

In the present approach, survey images for the six different
dates during the cotton seasons (Set A, Table 2) provided NDVI
values for over 17,000 locations within the field from which ESAP
selected the calibration locations for the 6, 12, and 20 sample
designs. A linear regression calibration model (Eq. (2)) was then fit
using NDVI values for the selected calibration locations on the
subsequent date (Set B) plus the full set of NDVI readings for the
prior survey date (Set A).

NDVI ¼ b0þ b1ðZ1Þ þ e (2)

where NDVI is the measured NDVI value at a calibration location
on the subsequent date, b0 and b1 are the regression intercept and
slope coefficients, respectively, and Z1 is equal to the NDVI value at
the location on the prior survey date minus the mean NDVI for the
full set of NDVI readings on the survey date, divided by the
standard deviation (SD) of NDVI on the survey date (Lesch et al.,
2000). The effects of spatially correlated calibration model
residuals were tested by the Moran score (IMS) for each model,
as calculated during the ESAP-Calibrate procedures (Lesch et al.,
2000). The calibration regression model derived for each date (with
Eq. (2)) was then used to predict the NDVI for all locations in the
field on the subsequent date (i.e., Set B, Table 2). For example,
survey data on DOY 163, 2002, were used to select calibration
locations for calibration and prediction of NDVI for the entire field
on DOY 176, 2002 (Table 2). Predicted NDVI field averages and
range interval estimates were then compared with the full set of
NDVI data from images acquired on the subsequent date. The
performance of the prediction models were evaluated by the mean,
SD, coefficient of determination (r2), and the root mean square
error (RMSE). Output (NDVI prediction) files created by the ESAP-
Calibrate software were then imported into the ESAP-SaltMapper
program.

2.3.3. ESAP-SaltMapper

The ESAP-SaltMapper program is designed to rapidly create 2D
spatial raster maps of the target soil or plant property predictions.
This program also contains an output ASCII text file feature which
allows the prediction data file to be exported as a generic ASCII text
file (for use in more sophisticated mapping software applications,
such as Surfer or ArcGIS). For this study, the ESAP-SaltMapper
program was used to generate the final 2D raster maps of the
observed and predicted NDVI data.

2.4. Transpiration estimation

Data for NDVI obtained from imagery and ESAP predictions
were also used to estimate basal crop coefficients. The NDVI-based
Kcb were then used to calculate daily crop transpiration at the
specific locations within each of the 32 treatment plots where soil
water balance measurements were made. The approach involved,
first, estimating daily Kcb values for the specific plot locations from
NDVI and then multiplying the Kcb by ETc for the corresponding
day, obtaining daily Tr. The Kcb were estimated using the two
relationships presented by Hunsaker et al. (2005), in their Fig. 3,
which derive the cotton Kcb as a function of NDVI.

Calculation of estimated Tr was considered separately for each
of the six intervals summarized in Table 2, where the first day of an
interval began on the DOY corresponding to the Set A image
acquisition and the last day of the interval occurred on the DOY of
the subsequent Set B image acquisition. For example, the interval
between DOY 163 and 176 in 2002 included 14 days of calculated
Tr for each location, whereas the interval between DOY 190 and
217 in 2003 included 28 days. For all six intervals, the actual
imagery observation of NDVI (i.e., from the Set A image) for each of
the 32 specific plot locations was used for the location’s NDVI on
the first day of the interval. The predicted NDVI values for each
location obtained using the ESAP procedures for the 6, 12, and 20
sample designs were used as the location’s NDVI on the last day of
the interval. For comparison, calculation of estimated Tr for each
interval was also made using the observed NDVI for each location
(i.e., obtained from the Set B image) as the location’s NDVI on the
last day of the interval. For each location, the daily NDVI values for
the entire interval were obtained by linear interpolation between
the location’s first and last NDVI values for the interval.

For each of the 32 treatment plot locations, the daily Kcb were
calculated as a function of the daily NDVI using either the primary
function, valid from planting until cotton cutout, or the late season
function, used after cutout, as described by Hunsaker et al. (2005).
The late season function was used for days occurring after cutout
(DOY 241) for calculating Kcb in 2002 (i.e., it was used for a few
final days for the interval from 226 to 246, and for all days for the
interval from DOY 246 to 261). Cutout occurred on DOY 235 in
2003 and, therefore, the late season function was not used for any
of the 2003 intervals, which included only days before DOY 235.
After determining daily Kcb from NDVI, it was multiplied by the

Table 2
Dates of aerial images (Set A) used as survey data to select NDVI sample locations, which were used to calibrate and then predict the spatial NDVI for the entire field on a

subsequent date (Set B). General conditions describe the growing period from Set A to Set B.

Set A (Survey) Set B (calibrated/predicted) General cotton field conditions

DOY Year NDVIa DOY Year

163 2002 0.23 176 2002 35–50% ground cover; high N plots fertilized, DOY 155

226 2002 0.86 246 2002 80–100% ground cover; final irrigations, DOY 235

246 2002 0.79 261 2002 Late season senescence

153 2003 0.15 168 2003 25–40% ground cover; high N plots fertilized, 143–149

176 2003 0.56 190 2003 60–80% ground cover; high N plots fertilized, DOY 185–199

190 2003 0.69 217 2003 80–100% ground cover

a Indicates the field mean NDVI on the day of the survey image.

D.J. Hunsaker et al. / Agricultural Water Management 96 (2009) 1293–13041296
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corresponding ETc for each day, obtaining daily Tr values for each
day in the interval. The daily Tr were then summed over all days
within the interval to obtain the cumulative Tr. This was done for
each of the 32 treatment plot locations.

The calculated cumulative Tr for each plot was compared to the
cumulative Tr obtained as a residual from the soil water balance
measurements made for each plot. Statistical analyses were made
to evaluate agreement between estimated cumulative Tr and the
cumulative Tr from the soil water balance. Statistical evaluation
parameters included the coefficient of determination (r2), root
mean square error (RSME), mean absolute error (MAE) (Legates
and McCabe, 1999), and mean absolute percent difference (MAPD)
(Kustas et al., 1999).

3. Results and discussion

3.1. NDVI prediction

Fig. 2 shows the selected NDVI calibration locations that were
used to predict the spatial distribution of NDVI for the cotton field
on DOY 176 (2002). The sites for the 6, 12, and 20 sample schemes
(indicated by ID reference numbers on the map) were determined
from ESAP-RSSD using survey data for DOY 163, 2002. Note that
several of the locations selected for each sample scheme were close
to the outer edges of the field. As mentioned earlier, ESAP-RSSD
attempts to locate sites as far apart as possible to minimize spatial
autocorrelation in the regression model residuals. The 12 and 20
sample schemes also had several common calibration locations
selected by ESAP.

Regression model summary statistics obtained for the 6, 12, and
20 sample designs are shown in Table 3a, b, and c, respectively, for
each of the six calibration/prediction dates. Although the linear
regression models obtained for each date and sample scheme were
significant at a probability of 0.05 or less, model r2 values varied
considerably (0.51–0.96), as did the RMSE, 0.034–0.103. With one
exception, model IMS scores were not significant, which indicates
the assumption of spatial independence was not violated. The
significant IMS for the 20 location scheme on DOY 176 (Table 3c)
suggests that predictions of NDVI for field locations with that
model could be biased.

The regression calibration models that were estimated for
predicting DOY 176, 2002 and DOY 168, 2003 had generally lower
r2 values and higher RMSE compared to models estimated at later
dates during the growing seasons (Table 3). Calibration locations
for DOY 176 and DOY 168 were selected from survey data on DOY
163, 2002 and DOY 153, 2003, when the mean NDVI for the field
were 0.23 and 0.15, respectively (Table 2). Most likely, less efficient
calibration models occurred during the earlier season conditions
because NDVI was more highly influenced by soil background. At
later times during the season, larger cotton canopies reduced the
effects of soil background on NDVI. Considering r2 and RMSE
values, it appeared that prediction models for the sample designs
containing 6 and 12 locations were as robust as those for the 20
location design (Table 3).

The observed and ESAP-predicted NDVI means calculated
using over 17,000 points for the entire field are shown for all six
prediction dates in Table 4a, b, and c, respectively, for the 6, 12,
and 20 sample designs. The difference between predicted and
observed means were less than 3%, except on DOY 176, 2002
which varied from 5% to 17% for the three sample designs.
However, for all cases, the predicted means were statistically
equal to the observed means at the 95% confidence level. Thus,
the ESAP calibration models for all three sample designs
appeared to provide reasonably good estimates of field-wide
NDVI means. The lower standard deviation of NDVI for predicted
than observed NDVI does suggest, however, that the models were

not effective in predicting the upper and lower extremes of the
observed NDVI.

Comparison of the three sample designs in Table 4 shows that
the prediction r2 values were the same for all designs for a given
date, though RMSE values varied somewhat among the designs.
Similar to the seasonal r2 trends for calibration models (Table 3),

Fig. 2. Selected sample locations as output from ESAP-RSSD from survey data on

DOY 163, 2002, for prediction of NDVI on DOY 176 for (a) 6, (b) 12, and (c) 20 sample

locations designs.

D.J. Hunsaker et al. / Agricultural Water Management 96 (2009) 1293–1304 1297
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the lowest prediction r2 values occurred for early season dates,
where the r2 were 0.48 for DOY 176, 2002 and 0.55 for DOY 168,
2003 (Table 4). For all other dates, the r2 were 0.63–0.88. As noted
earlier, less efficient calibration models were obtained for the early
season conditions. However, the lower prediction r2 values for DOY
176 and 168 may also suggest that the spatial structure for NDVI
during the early season was less stable between the time the
survey was made and the subsequent prediction than for later
seasonal periods. That is, the spatial stability of NDVI from point to
point within the field was potentially disrupted to a greater extent
due to crop management differences that occurred for treatment
plots during the early season. Once plots approached full cover and
maximum NDVI, the effects of treatment differences on NDVI were
diminished and had a lesser impact on NDVI structure. As the
prediction r2 values increased from early to later seasonal
conditions, the RMSE generally decreased (Table 4). Over all dates
and sample designs, the RMSE varied from 0.030 to 0.076. Analysis
and discussion of the NDVI predictions on the crop coefficients and
Tr estimations will be addressed in the next section.

The ESAP-generated range interval estimates shown in Table 5
(2002) and Table 6 (2003) provide a means to compare how well
the different sample designs predicted the observed variability of
NDVI within the field. Note that an RIE represents the fraction of
NDVI pixels falling within a specific interval range. For example, on
DOY 176, 2002 (Table 5a), only 2.8% of the field had observed NDVI
values below 0.2, whereas 42.9% of the field exhibited NDVI values
between 0.2 and 0.4, etc. For DOY 176, 2002, the predicted RIE
between 0.2 and 0.4 for the six sample design (76.6%) was much
larger than the observed, whereas between 0.4 and 0.6 it was
considerably smaller (21.4% versus 51.2%). On that particular early
season date, observed RIE were somewhat better represented for
the 12 or 20 than the six sample design. Overall RIE agreement was
generally better for DOY 246 and 261, 2002 (Table 5b and c,
respectively), as well as for all dates in 2003 (Table 6) compared to
results for DOY 176. However, it was apparent that the predicted
values of NDVI did not agree well with the observed NDVI for the
0–0.2-interval range. For all six prediction dates, a relatively stable

portion (2–4%) of the observed total pixel area corresponded to
NDVI values less than 0.2. The existence of these lower NDVI values
was due to exposed patches of bare soil areas within the field.
Although the amounts of bare soil pixels were small, their
occurrence ultimately caused a slight bimodal distribution of
observed NDVI rather than the normal distribution assumed in
ESAP. The bimodal effects due to bare soil are depicted by the
observed NDVI histograms for DOY 176, 2002 (Fig. 3a) and DOY

Table 3
Regression model statistics for the six calibration/prediction dates using (a) 6, (b)

12, and (c) 20 sample locations selected in ESAP-RSSD. Regression coefficients, b0

and b1, are the intercept and slope, respectively, r2 is the coefficient of

determination, and RMSE is the root mean square error. IMS Prob is the significance

level of the Moran test for spatial independence of regression residuals.

DOY Year Regression

coefficients

r2 RMSE IMS Prob

b0 b1

(a)

176 2002 0.343 0.075 0.67 0.090 0.277

246 2002 0.775 0.113 0.93 0.034 0.216

261 2002 0.717 0.111 0.79 0.065 0.888

168 2003 0.385 0.089 0.76 0.103 0.136

190 2003 0.699 0.132 0.96 0.050 0.264

217 2003 0.873 0.071 0.86 0.050 0.521

(b)

176 2002 0.388 0.086 0.70 0.077 0.541

246 2002 0.772 0.108 0.89 0.037 0.697

261 2002 0.751 0.088 0.86 0.034 0.162

168 2003 0.381 0.068 0.66 0.068 0.137

190 2003 0.700 0.121 0.95 0.045 0.889

217 2003 0.888 0.056 0.73 0.051 0.554

(c)

176 2002 0.378 0.076 0.56 0.089 0.019

246 2002 0.781 0.111 0.51 0.079 0.464

261 2002 0.764 0.101 0.81 0.045 0.583

168 2003 0.360 0.113 0.83 0.071 0.580

190 2003 0.713 0.088 0.74 0.074 0.848

217 2003 0.878 0.064 0.66 0.062 0.482

Table 4
Mean and standard deviation (SD) of NDVI for observed and ESAP-predicted,

regression coefficient of determination (r2) and root mean square error (RMSE) for

predicted versus observed of the six calibration/prediction dates using (a) 6, (b) 12,

and (c) 20 sample location designs.

DOY Year Observed Predicted r2 RMSE

Mean SD Mean SD

(a)

176 2002 0.41 0.101 0.34 0.075 0.48 0.054

246 2002 0.77 0.158 0.77 0.113 0.84 0.045

261 2002 0.74 0.142 0.72 0.111 0.88 0.037

168 2003 0.37 0.127 0.38 0.089 0.55 0.059

190 2003 0.69 0.150 0.70 0.132 0.75 0.066

217 2003 0.89 0.132 0.87 0.071 0.63 0.043

DOY Year Observed Predicted r2 RMSE

Mean (SD) SD Mean SD

(b)

176 2002 0.41 0.101 0.39 0.086 0.48 0.062

246 2002 0.77 0.158 0.77 0.108 0.84 0.043

261 2002 0.74 0.142 0.75 0.088 0.88 0.030

168 2003 0.37 0.127 0.38 0.068 0.55 0.047

190 2003 0.69 0.150 0.70 0.121 0.75 0.060

217 2003 0.89 0.132 0.89 0.057 0.63 0.034

DOY Year Observed Predicted r2 RMSE

Mean SD Mean SD

(c)

176 2002 0.41 0.101 0.38 0.076 0.48 0.055

246 2002 0.77 0.158 0.78 0.111 0.84 0.044

261 2002 0.74 0.142 0.76 0.101 0.88 0.034

168 2003 0.37 0.127 0.36 0.113 0.55 0.076

190 2003 0.69 0.150 0.71 0.087 0.75 0.044

217 2003 0.89 0.132 0.88 0.064 0.63 0.039

Table 5
Observed and predicted NDVI ratio interval estimates (RIE) for the 6, 12, and 20

sample designs on (a) DOY 176, (b) DOY 246, and (c) DOY 261 in 2002.

NDVI Intervals Observed RIE (%) Predicted RIE (%)

6 12 20

(a)

0.0–0.2 2.81 1.94 1.14 0.80

0.2–0.4 42.9 76.6 57.4 63.1

0.4–0.6 51.2 21.4 39.9 35.6

0.6–0.8 3.07 0.04 1.50 0.43

0.8–1.0 0.00 0.00 0.00 0.00

(b)

0.0–0.2 2.93 1.45 0.62 0.91

0.2–0.4 1.23 1.88 2.69 2.41

0.4–0.6 4.67 1.10 1.04 1.00

0.6–0.8 36.7 37.5 42.6 32.2

0.8–1.0 54.5 58.1 53.0 63.4

(c)

0.0–0.2 2.63 0.10 0.00 0.00

0.2–0.4 0.77 3.33 2.17 2.89

0.4–0.6 6.46 5.31 2.32 1.69

0.6–0.8 53.4 76.8 65.8 49.9

0.8–1.0 36.8 14.4 29.7 45.6
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190, 2003 (Fig. 3b). Because the predicted NDVI distributions are
constructed in ESAP assuming normality of the survey data,
distributions for the predicted NDVI are ultimately more
symmetrical and of narrower range than the observed counterpart.
This is illustrated by the histograms of predicted NDVI for the 12
sample location design on DOY 176 (Fig. 3c) and DOY 190 (Fig. 3d).

3.2. Transpiration estimation

The means of the 12 experimental sub-treatments (as defined
in Table 1) for measured cumulative Tr are shown for each of the
three intervals of 2002 (Fig. 4) and 2003 (Fig. 5). The sub-treatment
means for estimated cumulative Tr, based on observed NDVI from
imagery, are also presented in the figures for comparison with the
measured data. Estimated Tr using the actual observed NDVI are
presented since they give an indication of the best-case agreement
with the measured Tr that can be expected when calculating Tr
using the NDVI-based crop coefficient approach.

Treatments for high and low N applications started on DOY 155
in the 2002 cotton experiment, whereas irrigation treatments
were not imposed until DOY 168. In Fig. 4a, differences for
measured cumulative Tr between irrigation and N treatments
during the early season interval of 2002 (DOY 163–176) were not
apparent. However, the measured cumulative Tr was related to
the differences in early-season plant canopy size, where measured
Tr increased from the sparse to the dense treatments. The
measured Tr trend due to plant density was estimated reasonably
well for that interval, though estimated cumulative Tr was
generally lower than the measured Tr for treatments (Fig. 4a). As
the 2002 season progressed, differential irrigation scheduling
resulted in less frequent irrigation for the NDVI than for the FAO
treatment. The result was that greater soil water deficits occurred
for NDVI than the FAO counterpart treatment (Hunsaker et al.,
2005). The effects of the irrigation treatment differences on the
measured cumulative Tr can be observed for the interval from
DOY 226–246 (Fig. 4b), which shows reduced measured Tr for
NDVI relative to its FAO sub-treatment counterpart (e.g.,

Table 6
Observed and predicted NDVI ratio interval estimates (RIE) for the 6, 12, and 20

sample designs on (a) DOY 168, (b) DOY 190 and (c) DOY 217 in 2003.

NDVI intervals Observed RIE (%) Predicted RIE (%)

6 12 20

(a)

0.0–0.2 4.16 0.45 0.04 4.67

0.2–0.4 67.8 62.3 65.9 63.6

0.4–0.6 18.7 35.6 33.8 28.5

0.6–0.8 9.30 1.64 0.24 3.17

0.8–1.0 0.00 0.00 0.00 0.01

(b)

0.0–0.2 2.25 0.00 0.00 0.00

0.2–0.4 2.19 2.41 2.20 0.01

0.4–0.6 14.9 19.4 16.8 9.29

0.6–0.8 61.8 56.9 61.1 74.2

0.8–1.0 18.9 21.3 20.0 16.5

(c)

0.0–0.2 1.92 0.00 0.00 0.00

0.2–0.4 0.38 0.00 0.00 0.00

0.4–0.6 0.89 1.58 0.00 0.01

0.6–0.8 4.07 9.73 5.88 8.64

0.8–1.0 92.8 88.7 94.1 91.3

Fig. 3. Histograms for observed NDVI data and corresponding theoretical normal distribution functions on (a) DOY 176, 2002 and (b) DOY 190, 2003 compared with the

histograms for predicted NDVI data and normal distribution functions for the 12 location sample design on (c) DOY 176, 2002 and (d) DOY 190, 2003.
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comparison of NTH with FTH). The estimated cumulative Tr for the
interval appeared to be in good agreement with the measured Tr
(Fig. 4b). The last interval evaluated for 2002 was from DOY 246–
261 (Fig. 4c) and all days in the interval occurred after cotton
cutout. For this late season interval, the effects due to irrigation
treatment on measured Tr were still apparent. However, the
measured Tr was also related to nitrogen treatments, where
measured Tr was, in many cases, lower for the low N versus the
high N counterparts, particularly for the NDVI sub-treatments
(e.g., NDL versus NDH). Since the late season interval occurred
after cutout, the calculated Tr was based on the late season Kcb
versus NDVI function, described earlier. The estimated cumula-
tive Tr for the interval showed the general measured Tr trends, but

estimates of measured were poor for certain sub-treatments, such
as FSL and FDH (Fig. 4c).

Measured cumulative Tr variation among treatments for the
early season interval in 2003 (Fig. 5a) was similar to that in 2002,
where measured Tr varied due to plant density, but not for
irrigation or nitrogen treatment. Compared to the 2002 cotton
experiment, the differential irrigation scheduling between NDVI
and FAO treatment counterparts was slight (less than 50 mm
difference in total seasonal applied irrigation water), except
between the NSH and FSH, where NSH received about 130 mm
less total water than FSH. As seen in Fig. 5b, measured Tr for the
interval from DOY 176 to 190 varied primarily with plant density,
except for the evident irrigation treatment difference in measured

Fig. 4. Means for measured and estimated cumulative transpiration (Tr) for 12 treatments determined for intervals from (a) DOY 163–176, (b) DOY 226–246, and (c) DOY

246–261 in 2002. Measured Tr was determined from soil water balance measurements. Estimated Tr was obtained by multiplying daily Kcb values, derived from imagery-

observed NDVI, by daily ETc for all days in a given interval.
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Tr between NSH and FSH. However, the interval from DOY 190 to
217, 2003 (Fig. 5c) resulted in more uniform measured Tr among
sub-treatments than for the earlier intervals in 2003. For this
interval, the effects on measured Tr due to plant density were
minimal since most plots were now at full cover, whereas the
effects due to N treatment on Tr were not yet evident. The
agreement between estimated and measured cumulative Tr
appeared reasonably good for most plots in the three intervals
of 2003 (Fig. 5a–c).

Summary statistics to aid in evaluating how well the estimated
cumulative Tr using ESAP-predicted NDVI agreed with the
measured cumulative Tr are provided in Table 7 for the three
2002 intervals and in Table 8 for the three intervals of 2003. For
comparison with Tr based on predicted NDVI, statistical summa-

ries are also provided in the tables for the estimated cumulative Tr
that used the observed NDVI from imagery.

Excluding the first interval of 2002 (Table 7a), the field-wide
means for estimated cumulative Tr were within�7.8%, 4.0%, 4.6% of
the measured field-wide mean for the 6, 12, and 20 sample locations,
respectively, which compare favorably with �3.3% agreement with
measured Tr obtained when estimated Tr was based on observed
NDVI. In all cases, the field-wide measured mean for the early season
interval in 2002 (DOY 163–176) was underestimated, 8.0% based on
observed NDVI and 8.6% to 12.5% based on predicted NDVI. As Fig. 4a
suggests, underestimation of Tr for the interval was higher for the
dense than sparser density treatments, which indicates lower than
expected estimated Kcb were obtained for those treatments. The
standard deviation for estimated Tr based on predicted NDVI were

Fig. 5. Means for measured and estimated cumulative transpiration (Tr) for 12 treatments determined for intervals from (a) DOY 153–168, (b) DOY 176–190, and (c) DOY 190–

217 in 2003. Measured Tr was determined from soil water balance measurements. Estimated Tr was obtained by multiplying daily Kcb values, derived from imagery-

observed NDVI, by daily ETc for all days in a given interval.
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generally consistent with the SD for measured Tr (within 2 or 3 mm
for most intervals). However, the SD for estimated Tr was about 8 mm
higher than the measured SD for the last interval of 2003 (Table 8c),
indicating greater variability among treatment plots than for
measured Tr. Although the SD was closer (within 5 mm) to the
measured SD for estimates based on observed than predicted NDVI
for the last interval of 2003, SD for observed and predicted were
similar for other intervals.

Linear regression of estimated against measured Tr resulted in
r2 values that varied 0.52–0.81, whereas RMSE varied from 4.1 to
12.5 mm (Tables 7 and 8). Generally, the r2 that were obtained for
estimated Tr based on observed NDVI were slightly higher (0.54–
0.83), though the RMSE was not consistently lower compared with
those based on predicted NDVI. Considering all six intervals, the r2

values were higher for the shorter (14–16 days) than for the longer
(21–28 days) intervals. However, for all regressions considered in
the tables, the resultant r2 were highly significant (p < 0.01).

Since the mean and SD for measured cumulative Tr varied
among the different intervals, the mean absolute error and the
mean absolute percent difference were calculated to provide
additional criteria with which to evaluate how well the estima-
tions agreed with the measured cumulative Tr. When cumulative
Tr was estimated using the observed NDVI, the MAPD varied from
3.0% to 7.3% for all intervals, excluding the late season interval from
DOY 246 to 261 in 2002 where MAPD was 12.3% (Table 7c). The
MAPD results for the estimated Tr based on predicted NDVI were
generally larger than for those for the observed for each interval,
but not appreciably greater (Tables 7 and 8). Excluding the last
interval for 2002, the MAPD for the 6, 12, and 20 sample designs for
all other intervals were 3.6 to 12.3%, 3.4 to 8.8%, and 3.5 to 9.8%,

respectively. The six sample designs had a higher MAPD for the
first interval in 2002 (12.3%), but otherwise the MAPD for the six
designs were in line with the other two sample designs. The MAPD
for the late season interval of 2002 for 6, 12, and 20 sample designs
(12.7–13.4%), were similar to the MAPD for the observed for that
interval (Table 7c).

The reasons for the poorer agreement between estimated and
measured Tr for the late cotton season interval of 2002 than for the
other intervals are likely twofold. First, there is a change in the
canopy architecture from that during mid-season due to senescing
leaves. This can have a large influence on NDVI readings, which
may not be closely related to transpiration. Since the relationship
between Kcb and NDVI established for the primary cotton growing
season models Kcb poorly during the senescence period, a second
Kcb-NDVI function was developed to provide a better fit for late
season conditions (Hunsaker et al., 2005). Unfortunately, the data
used to derive the secondary function was rather limited, thereby
resulting in an inexact relationship. Thus, for the late season
interval of 2002, which occurred during senescence, the use of the
secondary function to calculate cumulative Tr added imprecision
to the estimates. However, 12–13% MAPD for estimated Tr, as
obtained for the late 2002 interval, could be sufficient for irrigation
scheduling purposes late in the cotton season when few if any
irrigations are needed.

The results of the evaluations presented above indicate that
using ESAP to calibrate and predict the NDVI-basal crop
coefficients can be an effective method to estimate the spatial
distribution of cotton transpiration within an irrigated field. It was
found that the ESAP predicted NDVI provided estimates of
measured cumulative Tr, determined from soil water balance

Table 7
Mean and standard deviation (SD) for measured and estimated cumulative crop transpiration (Tr) determined for 32 treatment plots over intervals from (a) DOY 163 to 176,

(b) DOY 226 to 246, and (c) DOY 246 to 261 during the 2002 cotton growing season. Statistical parameters for estimated Tr include coefficient of determination (r2), root mean

square error (RMSE), mean absolute error (MAE), and mean absolute percent difference (MAPD).

(a) DOY 163–176 (14 days) Cumulative Tr (mm)

Mean SD

Measureda 88.0 10.7 Statistical parameters for estimated

Estimatedb r2 RMSE (mm) MAE (mm) MAPD (%)

Predicted NDVI, 6 sites 77.0 8.4 0.77 4.1 11.0 12.3

Predicted NDVI, 12 sites 80.4 8.9 0.78 4.3 7.9 8.8

Predicted NDVI, 20 sites 79.3 8.3 0.78 4.1 8.8 9.8

Observed NDVI 81.0 7.9 0.81 3.5 6.7 7.3

(b) DOY 226–246 (21 days) Cumulative Tr (mm)

Mean SD

Measured 161.7 14.0 Statistical parameters for estimated

Estimated r2 RMSE (mm) MAE (mm) MAPD (%)

Predicted NDVI, 6 sites 161.3 11.6 0.57 7.8 7.5 4.8

Predicted NDVI, 12 sites 162.5 13.4 0.53 9.3 8.3 5.3

Predicted NDVI, 20 sites 162.8 11.4 0.56 7.6 7.6 4.9

Observed NDVI 162.2 16.9 0.75 8.3 6.0 3.7

(c) DOY 246–261 (16 days) Cumulative Tr (mm)

Mean SD

Measured 49.8 10.6 Statistical parameters for estimated

Estimated r2 RMSE (mm) MAE (mm) MAPD (%)

Predicted NDVI, 6 sites 45.9 10.9 0.59 7.1 6.8 13.0

Predicted NDVI, 12 sites 48.9 13.3 0.60 8.6 6.6 12.7

Predicted NDVI, 20 sites 50.8 15.0 0.60 9.6 6.9 13.4

Observed NDVI 48.4 12.7 0.59 8.2 6.5 12.3

a Measured cumulative Tr was determined from soil water balance measurements.
b Estimated cumulative Tr was obtained by multiplying the daily Kcb values, derived from NDVI, by the daily ETc for all days in a given interval. The estimated include Tr

computed with Kcb based on predicted NDVI using ESAP procedures and 6, 12, and 20 sampling site designs and Tr computed with Kcb based on imagery-observed NDVI.
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measurements, consistent with estimates obtained using actual
NDVI imagery. The measured cumulative transpiration values for
32 plots within the field could be estimated within an absolute
mean difference of less then 10%, for all intervals studies, except for
the late season period (12–13%) when the cotton was senescing.
Thus, the Kcb-NDVI used in conjunction with several well-timed
aerial imagery acquisitions of NDVI during the cotton growing
season could provide an improvement over traditional methods for
managing crop water use and irrigation schedules in spatially
variable, surface-irrigated cotton. Depending on the particular
irrigation management criteria, field-wide uncertainties for
cumulative Tr on the order of 10% or less might or might not be
acceptable.

4. Conclusions

� Using sample sizes of 6, 12, and 20 locations, the ESAP software
was able to reliably estimate NDVI calibration models for all six
prediction dates. The models accurately estimated observed
NDVI field means (typically less than 3% difference) and
reasonably predicted the observed NDVI standard deviation,
though lower than observed standard deviations occurred for all
cases.
� When considering all six prediction dates studied, there was not

a notable advantage to using more than six sampling locations
for predicting spatially distributed NDVI.
� Using ESAP to calibrate and predict the NDVI-basal crop

coefficients can be an effective method to estimate the spatial
distribution of cotton transpiration within an irrigated field.

� NDVI predicted NDVI provided estimates of measured cumula-
tive Tr, determined from soil water balance measurements,
consistent with estimates obtained using actual NDVI imagery.
� Mean absolute point-to-point errors associated with using crop

coefficients based on predicted NDVI to estimate cumulative Tr
varied from 3.4% to 13.4%, where the higher errors occurred
during the end of the season, when the cotton was senescing.
� The Kcb-NDVI used in conjunction with several well-timed aerial

imagery acquisitions of NDVI during the cotton growing season
could provide an improvement over traditional methods for
managing crop water use and irrigation schedules in spatially
variable, surface-irrigated cotton.
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